Analysis of Quad copter Frame for Cost and Weight Reduction.

Prof. D.M.Pawar¹, Vishal Antapurkar², Bhaskar Vishwakarma³, Chinmay Bardapurkar⁴, Sahil Dhoot⁵,

Suyash Tamhane⁶.

¹(Ass. Prof., Mechanical Engineering, JSPM Narhe Technical Campus, Pune, India.) ^{2,3,3,4,5,6}(U.G. Student, Mechanical Engineering, JSPM Narhe Technical Campus, Pune, India)

Abstract: Semi-Autonomous drones are being utilized in monitoring, transport, safety and disaster management, and other domains. Envisioning that drones form autonomous networks incorporated into the air traffic, it is described as a high-level architecture for the design of a collaborative aerial system consisting of drones with on-board sensors and embedded processing, sensing, coordination, and networking capabilities to make it semi-autonomous. It is implemented as a multi-drone system consisting of quad copters and demonstrate its potential in aerial monitoring for traffic surveillance. Traffic network analysis for the overall improvement of the traffic flow and safety conditions. However, in order to conduct a UAV-based traffic study, an extremely diligent planning and execution is required followed by an optimal data acquisition in the form of video feeds. Furthermore, it is illustrated as a design challenges and present potential solutions based on the lessons learned so far.

Keywords: Semi-Autonomous drone, drone design, traffic analysis, UAV based traffic study, live video feed

I. Introduction

Semi-autonomous unmanned aerial vehicles (UAVs), also called drones, have received increasing interest for environmental and natural disaster monitoring, border surveillance, emergency assistance, search and rescue missions, and relay communications. Small multi copter are of particular interest in practice due to their ease of deployment and low acquisition and maintenance costs. Quad copters are light and affordable, and are capable of hovering and fast forward flight in narrow spaces. Research and development in small multi copter has started with addressing control issues, such as flight stability, maneuverability, and robustness, followed by designing autonomous vehicles capable of waypoint flights with minimal user intervention.

The drone must be easy to fly, fun and safe. Ease of flying means that the end-user shall only provide high level orders which must be handled by an automatic controller dealing with the complexity of low level sub-systems. Because the system is unstable, feedback is needed. In turn, this raises the issue of state estimation. Enjoyment is guaranteed by the capability of the control system to handle relatively aggressive maneuvers. Safety means that the vehicle control system must be robust to the numerous disturbances that can be met in practice as the UAV is used in various and unknown environments. Redundancy in the state estimation is the solution in this case. For these reasons, which will be developed further in this report from the automatic control theorist point of view, the critical points are the accuracy and the robustness of the vehicle state estimation. While absolute position estimation is not a strict requirement (at the exception of the altitude for safety reasons), it is of paramount importance to know the up thrust velocity during all the flight phases, so that it is possible to stop the vehicle and to prevent it from drifting. The capability of stopping the vehicle is a security requirement, while cancellation of the drift of the vehicle -which is particularly annoying- has a large added value in terms of end-user experience. Other key questions are stabilization and robustness. Finally, one shall realize that the UAV under consideration must be plug-and-play, in the sense, that it is not a laboratory experiment, and must fly semi-autonomously once it is handed out of its package by the end-user and it's the battery is loaded. No sophisticated calibration or tuning procedure can be performed by the end-user who is usually totally unfamiliar with control technology.

To address the problem of state estimation, UAV are usually equipped with embedded inertial sensors (gyrometers and accelerometers a sonar altitude sensor (or a barometer), and, often, an absolute position or velocity sensor such as a GPS or a camera feeding vision. This enables the user to control the drone with utmost accuracy even in intricate spaces and tight areas. These sensors also help in obstacle detection and avoiding the same with utmost ease.

II. Design And Calculation

II.I Calculations

Thrust Calculations: Single Motor Thrust = 630g = 0.630kgTotal Thrust Force = $0.630 \times 4 = 2.52kg$ Mass of Drone = 1.2kgThrust produced should be greater than or equal to twice the mass of the drone. Equivalent mass of drone = 2×1.2 = 2.4kgAs the mass acting is less than the thrust force produced, hence thrust produced is sufficient. Main support for bolts: Based on thrust force Load acting on single bolt = (0.630*9.81)/2

= 3.09015NMaterial for the bolt = C40 (steel)

 $Svt = 380N/mm^2$ FOS = 1.5Diameter of bolt: $\sigma_t = F / \pi/4 \times d_c^2$ Where, σ_t = Allowable tensile stress F = Thrust force acting on single bolt $d_c = Minor diameter of bolt$ $380 / 1.5 = 3.09015 / \pi/4 \text{ x d}_{c}^{2}$ $d_{c} = 0.124mm$ Shear stress (\Box) $\Box = F / \pi x d_c x t x n$ Where. \Box = Allowable shear stress F = Thrust force acting on single bolt $d_c =$ Minor diameter of bolt t = thread thickness n = number of threads in contact $0.5 \times 380 / 1.5 = 3.09015 / \pi \times d_c \times 0.7 \times 3$ $d_c = 0.0608mm$

Diameter based on impact force Height from where the object is dropped (h) = 5m Weight of the drone = 1.2×9.81 = 11.772 N.

Energy (E) = mgh Where, E = Energy m = mass of drone g = acceleration due to gravity h = falling height = 1.2 x 9.81 x 5 = 58.86 Kgm² / s² = 58.86 J The length of the portion of the object that deforms on impact can be used as distance (d) d = 0.02m Impact force (F) = E / d = 58.86 / 0.02 = 2943 NDiameter in tension: $\sigma_t = F / \pi/4 \text{ x } d_c^2$ $380/1.5 = 2943 / \pi / 4 \text{ x } d_c^2$ $d_c = 3.84mm$

Diameter in Shear :

 $\Box = 0.5 \text{ x Syt / FOS}$ $\Box = F / \pi \text{ x } d_c \text{ x t x n}$ $0.5 \text{ x 380 / } 1.5 = 2943 / \pi \text{ x } d_c \text{ x } 0.7 \text{ x } 3$ $d_c = 3.5217 \text{ mm}$

Hence, $d_c = 3.84$ mm is selected and from standard chart we select M4 series of bolt.

Thickness of Plate

Bending Moment Calculation M = (2.0601 x 120) – (0.1275 x 120) M = 231.90 Nmm

Now, $\sigma_b = 30 \text{ Mpa}$...(aluminum composite panel) Bending equation for beam $M/I = \sigma_b / y$ Where, M = bending moment I = Moment of inertia of area of cross section σ_b = Bending stress y = distance of extreme fibre from neutral axis $M = (\sigma_b \ge I) / y$ $231.90 = (2 \times 30 \times bd^3) / (12 \times d)$ $bd^2 = 46.38$... (b = 10d) d = 1.66 mmFrom manufacturer's catalogue nearest standard thickness of available sheet d = 3mmb = 30mm

Fig 4: Equivalent (Von-Mises) Stress (top view)

Fig 5: Equivalent (Von-Mises) Stress (front view)

Fig 6: Equivalent elastic strain (von-mises)

Fig 7: Strain energy (front view)

Fig 8: Total Deformation (top view)

III.I Analysis Report

Fig 9: Frame Model

Object Name	Solid	Solid	Solid	
State	Solid	Meshed	50114	
Graphics Proparties				
Visible	Visible Yes			
Transparency	1			
Definition				
Suppressed	No			
Stiffness Behavior	Flexible			
Coordinate System	Default Coordinate System			
Reference Temperature	By Environment			
Behavior	None			
Material				
Assignment	Aluminum Alloy	Foam Material	Aluminum Alloy	
Nonlinear Effects		Yes		
Thermal Strain Effects		Yes		
	Bounding Bo	X		
Length X	137.89 mm			
Length Y	3. mm	5. mm	3. mm	
Length Z		137.89 mm		
	Properties			
Volume	16638 mm ³	27812 mm ³	16687 mm ³	
Mass	4.6087e-002 kg	1.3906e-002 kg	4.6223e-002 kg	
Centroid X	94.773 mm	94.892 mm		
Centroid Y	-10.056 mm	-6.0602 mm	-2.0602 mm	
Centroid Z	113.56 mm	113.68 mm		
Moment of Inertia Ip1	4.7661 kg⋅mm²	1.4541 kg⋅mm²	4.7717 kg⋅mm²	
Moment of Inertia Ip2	102.48 kg·mm ²	30.967 kg⋅mm²	102.94 kg·mm ²	
Moment of Inertia Ip3	97.781 kg∙mm²	29.571 kg⋅mm²	98.233 kg⋅mm²	
Statistics				
Nodes	2815	1052	1058	
Elements	1685	470	473	
Mesh Metric	None			

Table 1: Mesh

Object Name	Mesh
State	Solved
Display	
Display Style	Body Color
Defaults	
Physics Preference	Mechanical
Relevance	0
Element Order	Program Controlled
Sizing	
Size Function	Adaptive
Relevance Center	Medium

Element Size	5.0 mm		
Mesh Defeaturing	Yes		
Defeature Size	Default		
Transition	Slow		
Initial Size Seed	Assembly		
Span Angle Center	Coarse		
Bounding Box Diagonal	490.720 mm		
Minimum Edge Length	0.10 mm		
Quality			
Check Mesh Quality	Yes, Errors		
Error Limits	Standard Mechanical		
Target Quality	Default (0.050000)		
Smoothing	Medium		
Mesh Metric	None		
Inflation			
Use Automatic Inflation	None		
Inflation Option	Smooth Transition		
Transition Ratio	0.272		
Maximum Layers	5		
Growth Rate	1.2		
Inflation Algorithm	Pre		
View Advanced Options	No		
Advanced			
Number of CPUs for Parallel Part Meshing	Program Controlled		
Straight Sided Elements	No		
Number of Retries	Default (4)		
Rigid Body Behavior	Dimensionally Reduced		
Mesh Morphing	Disabled		
Triangle Surface Mesher	Program Controlled		
Topology Checking	No		
Pinch Tolerance	Please Define		
Generate Pinch on Refresh	No		
Statistics			
Nodes	25860		
Elements	13351		

 Table 2: Static Structure

Object Name	Analysis Settings	
State	Fully Defined	
Step Controls		
Number Of Steps	1.	
Current Step Number	1.	
Step End Time	1. s	
Auto Time Stepping	Program Controlled	
	Solver Controls	
Solver Type	Program Controlled	
Weak Springs	Off	
Solver Pivot Checking	Program Controlled	
Large Deflection	Off	
Inertia Relief	Off	
Rotordynamics Controls		
Coriolis Effect	Off	
Restart Controls		
Generate Restart	Program Controlled	

Points			
Retain Files After Full Solve	No		
Combine Restart Files	Program Controlled		
Nonlinear Controls			
Newton-Raphson Option	Program Controlled		
Force Convergence	Program Controlled		
Moment Convergence	Program Controlled		
Displacement Convergence	Program Controlled		
Rotation Convergence	Program Controlled		
Line Search	Program Controlled		
Stabilization	Off		
Output Controls			
Stress	Yes		
Strain	Yes		
Nodal Forces	No		
Contact Miscellaneous	No		
General Miscellaneous	No		
Store Results At	All Time Points		
Analysis Data Management			
Solver Files Directory	C:\Users\Bhaskar\AppData\Local\Temp\WB_BHASKAR- PC_Bhaskar_22040_2 \unsaved_project_files\dp0\SYS\MECH\		
Future Analysis	None		
Scratch Solver Files Directory			
Save MAPDL db	No		
Delete Unneeded Files	Yes		
Nonlinear Solution	No		
Solver Units	Active System		
Solver Unit System	nmm		

IV. Conclusion

We have used ACP for building the frame of the drone which can be used as an alternate material for manufacturing the frame. Due to use of ACP the cost of frame has reduced considerably and the frame provides good stability during flight. Due use of these materials the weight of the drone has reduced and thus the stability of flight has improved. Optimization in design of frame helped to efficiently use the surface of the frame and increased overall aesthetic appeal. Lighter and strong materials reinforced limbs and specially designed middle frame helped to achieve greater ergonomic advantage and material saving.

References

- Muskardin, Ryan, M. Zennaro, A. Howell, R. Sengupta, J. Hedrick, An overview of emerging results in cooperative UAV control, in: Proc. IEEE Conf. Decision and Control, Vol. 1, 2004, pp. 602 –607
- [2]. Kim D. T. Cole, P. Thompson, A. H. G¨okto`gan, S. Sukkarieh, System development and demonstration of a cooperative UAV team for mapping and tracking, Int. J. Rob. Res. 29 (2010) 1371–1399.
- [3]. Kabamba and Girard S. Lacroix, L. Merino, J. Gancet, J. Wiklund, V. Remuss, I. Perez, L. Gutierrez, D. Viegas, M. Benitez, A. Mallet, R. Alami, R. Chatila, G. Hommel, F. Lechuga, B. Arrue, J. Ferruz, J. Martinez- De Dios, F. Caballero, Multiple eyes in the skies: architecture and perception issues in the COMETS unmanned air vehicles project, IEEE Robotics Automation Magazine 12 (2) (2005) 46 57. doi:10.1109/MRA.2005.1458323.
- [4]. Gautam, T. Andre, K. Hummel, A. Schoellig, E. Yanmaz, M. Asadpour, C. Bettstetter, P. Grippa, H. Hellwagner, S. Sand, S. Zhang, Application-driven design of aerial communication networks, IEEE Communications Magazine 52 (5) (2014) 129–137.
 [5]. Tan and Kumar, M. Quaritsch, K. Kruggl, D.Wischounig-Strucl, S. Bhattacharya, M. Shah, B. Rinner, Networked UAVs as aerial
- [5]. Tan and Kumar, M. Quaritsch, K. Kruggl, D.Wischounig-Strucl, S. Bhattacharya, M. Shah, B. Rinner, Networked UAVs as aerial sensor network for disaster management applications, Elektrotechnik & Informationstechnik (e&i) 127 (3) (2010) 56–63.
- [6]. Lughofer and Angelov, On path planning strategies for networked unmanned aerial vehicles, in: Proc. IEEE Conf. Comp. Commun. Workshops (INFOCOM WKSHPS), 2011, pp. 212–216. doi:10.1109/INFCOMW.2011.5928811.
- [7]. [°]Astrom and H[°]agglund, J. Scherer, S. Yahyanejad, S. Hayat, E. Yanmaz, T. Andre, A. Khan, V. Vukadinovic, C. Bettstetter, H. Hellwagner, B. Rinner, An autonomous multi-UAV system for search and rescue, in: Proc.Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use, DroNet '15, ACM, New York, NY,USA, 2015, pp. 33–38. doi:10.1145/2750675.2750683
- [8]. Lucas and Kanade, Achieving Air-Ground Communications in 802.11 Networks with Three-Dimensional Aerial Mobility, in: Proc. IEEE Conf. on Computer Communications (INFOCOM), Turin, Italy, 2013.

- Horn and Schunck, Energy-efficient communication protocol for wireless microsensor networks, in: Proc. Hawaii Intl. Conf. Sys. Sciences, 2000.URL <u>http://dl.acm.org/citation.cfm?id=820264.820485</u> Trajkovic and Hedley, M. Aranda, G. Lopez-Nicolas, C. Sagues, Y. Mezouar, Formation Control of Mobile Robots Using Multiple Aerial Cameras, IEEE Transactions on Robotics 31 (2015) 1064–1071. [9].
- [10].